Using Different Regression Methods to Estimate Leaf Nitrogen Content in Rice by Fusing Hyperspectral LiDAR Data and Laser-Induced Chlorophyll Fluorescence Data
نویسندگان
چکیده
Nitrogen is an essential nutrient element in crop photosynthesis and yield improvement. Thus, it is urgent and important to accurately estimate the leaf nitrogen contents (LNC) of crops for precision nitrogen management. Based on the correlation between LNC and reflectance spectra, the hyperspectral LiDAR (HSL) system can determine three-dimensional structural parameters and biochemical changes of crops. Thereby, HSL technology has been widely used to monitor the LNC of crops at leaf and canopy levels. In addition, the laser-induced fluorescence (LIF) of chlorophyll, related to the histological structure and physiological conditions of green plants, can also be utilized to detect nutrient stress in crops. In this study, four regression algorithms, support vector machines (SVMs), partial least squares (PLS) and two artificial neural networks (ANNs), back propagation NNs (BP-NNs) and radial basic function NNs (RBF-NNs), were selected to estimate rice LNC in booting and heading stages based on reflectance and LIF spectra. These four regression algorithms were used for 36 input variables, including the reflectance spectral variables on 32 wavelengths and four peaks of the LIF spectra. A feature weight algorithm was proposed to select different band combinations for the LNC retrieval models. The determination coefficient (R2) and the root mean square error (RMSE) of the retrieval models were utilized to compare their abilities of estimating the rice LNC. The experimental results demonstrate that (I) these four regression methods are useful for estimating rice LNC in the order of RBF-NNs > SVMs > BP-NNs > PLS; (II) The LIF data in two forms, including peaks and indices, display potential in rice LNC retrieval, especially when using the PLS regression (PLSR) model for the relationship of rice LNC with spectral variables. The feature weighting algorithm is an effective and necessary method to determine appropriate band combinations for rice LNC estimation.
منابع مشابه
Wavelength Selection of Hyperspectral Lidar Based on Feature Weighting for Estimation of Leaf Nitrogen Content in Rice
Hyperspectral LiDAR (HSL) is a novel tool in the field of active remote sensing, which has been widely used in many domains because of its advantageous ability of spectrum-gained. Especially in the precise monitoring of nitrogen in green plants, the HSL plays a dispensable role. The exiting HSL system used for nitrogen status monitoring has a multi-channel detector, which can improve the spectr...
متن کاملEstimating Rice Leaf Nitrogen Concentration: Influence of Regression Algorithms Based on Passive and Active Leaf Reflectance
Nitrogen (N) is important for the growth of crops. Estimating leaf nitrogen concentration (LNC) accurately and nondestructively is important for precision agriculture, reduces environmental pollution, and helps model global carbon and N cycles. Leaf reflectance, especially in the visible and near-infrared regions, has been identified as a useful indicator of LNC. Except reflectance passively ac...
متن کاملIntegrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture
Recent studies have demonstrated the usefulness of optical indices from hyperspectral remote sensing in the assessment of vegetation biophysical variables both in forestry and agriculture. Those indices are, however, the combined response to variations of several vegetation and environmental properties, such as Leaf Area Index (LAI), leaf chlorophyll content, canopy shadows, and background soil...
متن کاملPotential of vegetation indices combined with laser-induced fluorescence parameters for monitoring leaf nitrogen content in paddy rice
Nitrogen (N) is important for the growth of crops. Leaf nitrogen content (LNC) serves as a crucial indicator of the growth status of crops and can help determine the dose of N fertilizer. Laser-induced fluorescence (LIF) technology and the reflectance spectra of crops are widely used to detect the biochemical content of leaves. Many vegetation indices (VIs) and fluorescence parameters have been...
متن کاملStudy on Plant Nutrition Indicator Using Leaf Spectral Transmittance for Nitrogen Detection
The low fertilizer utilization at growing season and environment pollution coursed by unreasonable fertilization are becoming global outstanding problems in agricultural production. Scientific and reasonable fertilization based on rapid and nondestructive plant nutrient detection will be a valuable solution for solving above problems. In this study, spectral transmittance in wavelength ranged f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016